
Pattarawat Chormai
Doktorand (stellvertretender Jahrgangsvertreter)
Akademischer Werdegang
seit 2019 Doktorand, Max Planck School of Cognition, Leipzig
Promotionsarbeit an der Technischen Universität Berlin
Betreuer: Klaus-Robert Müller & Grégoire Montavon
Lab-Rotationen in der Orientierungsphase: Simon E. Fisher, Jürgen Jost, und Klaus-Robert Müller
2015–2018 Master of Science in Data Science, Technische Universität Eindhoven, Niederlande & Technische Universität Berlin
(Dual-Degree-Program der EIT Digital Master School)
2008–2012 Bachelor of Science in Information Technology, King Mongkut's Institute of Technology, Ladkrabang, Thailand
Lehre
2020/2021 Machine Learning 1 & 2 (Teaching Assistant), Technische Universität Berlin
2022/2023 Deep Learning 1 (Tutor), Technische Universität Berlin
Publikationen
Chormai, P., Herrmann, J., Müller, K.-R., and Montavon, G. (2024). “Disentangled Explanations of Neural Network Predictions by Finding Relevant Subspaces”. In: IEEE Trans. Pattern Anal. Mach. Intell. https://ieeexplore.ieee.org/document/10497845
Phatthiyaphaibun, W., Chaovavanich, K., Polpanumas, C., Suriyawongkul, A., Lowphansirikul, L., Chormai, P.,
Limkonchotiwat, P., Suntorntip, T., and Udomcharoenchaikit, C. (2023). “PyThaiNLP: Thai Natural Language
Processing in Python”. In: 3rd Workshop for Natural Language Processing Open Source Software, EMNLP.
Bender, S., Anders, C. J., Chormai, P., Marxfeld, H. A., Herrmann, J., and Montavon, G. (2023). “Towards Fixing
Clever-Hans Predictors with Counterfactual Knowledge Distillation”. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) Workshops, pp. 2607–2615.
Chormai, P., Pu, Y., Hu, H., Fisher, S. B., Francks, C., & Kong, X.-Z. (2022). Machine learning of large-scale multimodal brain imaging data reveals neural correlates of hand preference. NeuroImage, 262, 119534. https://doi.org/10.1016/j.neuroimage.2022.119534
Chormai, P., Prasertsom, P., Cheevaprawatdomrong, J., & Rutherford, A. (2020). Syllable-based neural Thai word segmentation. In Proceedings of the 28th International Conference on Computational Linguistics, pp. 4619–4637, Barcelona, Spain (online). International Committee on Computational Linguistics. https://doi.org/10.18653/vl/2020.coling-main.407
Rieger, L., Chormai, P., Montavon, G., Hansen, L. K., & Müller, K.-R. (2018). Structuring neural networks for more explainable predictions. In H. J. Escalante et al. (Eds.), Explainable and interpretable models in computer vision and machine learning. The Springer series on challenges in machine learning (pp. 115–131). Springer: Cham, Switzerland.
Posterpräsentation
Chormai, P., Kong, X.-Z., Fisher, S., & Francks, C. (2021, June). Machine learning reveals multimodal MRI signatures associated with handedness [Poster]. 27th Annual Meeting of the Organization for Human Brain Mapping (OHBM), online.
Foto: Nikolaus Brade